5,732 research outputs found

    Mexico’s Catch-22: How the Necessary Extradition of Drug Cartel Leaders Undermines Long-Term Criminal Justice Reforms

    Get PDF
    Grisly cartel violence has plagued Mexico in recent decades, effectively destabilizing its government and encasing its citizenry in trepidation and fear. A joint operation between Mexican Marines and the U.S. Drug Enforcement Administration in February 2014, however, finally penetrated the myth of invulnerability for drug trafficking organizations with the arrest of that world’s most powerful leader, Joaquin “El Chapo” Guzmán. Although this development is evidence of Mexican law enforcement’s newfound ability to track and capture the most dominant of drug bosses, Mexico’s criminal justice system continues to lack the requisite structure, political will, and expertise to mount such a high-profile prosecution successfully. Mexico, therefore, must extradite Guzmán to the United States to ensure that he receives immediate and adequate justice. A failed prosecution in Mexico would undermine public trust and subvert implementation of Mexico’s recent criminal justice reforms before they are realized, ultimately stunting its conversion to an accusatorial, public trial system and maintaining the violent status quo

    Managing Small-Business/University IT Partnerships

    Get PDF

    Chandra Localizations and Spectra of INTEGRAL Sources in the Galactic Plane

    Full text link
    We report on the results of observations of hard X-ray sources in the Galactic plane with the Chandra X-ray Observatory. The hard X-ray IGR sources were discovered by the INTEGRAL satellite, and the goals of the Chandra observations are to provide sub-arcsecond localizations to obtain optical and infrared counterparts and to provide constraints on their 0.3-10 keV spectra. We obtained relatively short, ~5 ks, observations for 20 IGR sources and find a bright Chandra source in INTEGRAL error circles in 12 cases. In 11 of these cases, a cross-correlation with optical and/or infrared source catalogs yields a counterpart, and the range of J-band magnitudes is 8.1-16.4. Also, in 4 cases, the Chandra X-ray spectra show evidence for absorbing material surrounding the compact object with a column density of local material in excess of 5x10^22 cm^-2. We confirm that IGR J00234+6141 is a Cataclysmic Variable and IGR J14515-5542 is an Active Galactic Nucleus (AGN). We also confirm that IGR J06074+2205, IGR J10101-5645, IGR J11305-6256, and IGR J17200-3116 are High Mass X-ray Binaries (HMXBs). Our results (along with follow-up optical spectroscopy reported elsewhere) indicate that IGR J11435-6109 is an HMXB and IGR J18259-0706 is an AGN. We find that IGR J09026-4812, IGR J18214-1318, and IGR J18325-0756 may be HMXBs. In cases where we do not find a Chandra counterpart, the flux upper limits place interesting constraints on the luminosities of black hole and neutron star X-ray transients in quiescence.Comment: Accepted by Ap

    Broadband Suzaku observations of IGR J16207-5129

    Get PDF
    An analysis of IGR J16207-5129 is presented based on observations taken with Suzaku. The data set represents ~80 ks of effective exposure time in a broad energy range between 0.5 and 60 keV, including unprecedented spectral sensitivity above 15 keV. The average source spectrum is well described by an absorbed power law in which we measured a large intrinsic absorption of nH = 16.2(-1.1/+0.9)x10^22 /cm2. This confirms that IGR J16207-5129 belongs to the class of absorbed HMXBs. We were able to constrain the cutoff energy at 19(-4/+8) keV which argues in favor of a neutron star as the primary. Our observation includes an epoch in which the source count rate is compatible with no flux suggesting a possible eclipse. We discuss the nature of this source in light of these and of other recent results.Comment: 12 pages, 6 figures, accepted for publication in Ap

    INTEGRAL and Swift observations of IGRJ19294+1816 in outburst

    Full text link
    IGRJ19294+1816 was discovered by INTEGRAL in 2009 during a bright X-ray outburst and was classified as a possible Be X-ray binary or supergiant fast X-ray transient. On 2010 October 28, the source displayed a second X-ray outburst and a 2 months-long monitoring with Swift was carried out to follow the evolution of the source X-ray flux during the event. We report on the INTEGRAL and Swift observations of the second X-ray outburst observed from IGRJ19294+1816. We detected pulsations in the X-ray emission from the source at \sim12.5 s up to 50 keV. The source X-ray flux decreased smoothly during the two months of observation displaying only marginal spectral changes. Due to the relatively rapid decay of the source X-ray flux, no significant variations of the source spin period across the event could be measured. This prevented a firm confirmation of the previously suggested orbital period of the source at 117 d. This periodicity was also searched by using archival Swift /BAT data. We detected a marginally significant peak in the periodogram and determined the best period at 116.2\pm0.6 days (estimated chance probability of a spurious detection 1%). The smooth decline of the source X-ray flux across the two months of observations after the onset of the second outburst, together with its relatively low value of the spin period and the absence of remarkable changes in the spectral parameters (i.e., the absorption column density), suggests that IGRJ19294+1816 is most likely another member of the Be X-ray binaries discovered by INTEGRAL and not a supergiant fast X-ray transient.Comment: Accepted for publication in A&A. 7 pages, 10 figure

    Tornado Warnings in Three Southern States: A Qualitative Analysis of Public Response Patterns

    Get PDF
    Recent research in three Southern states supplied data describing the role community structure and culture played in shaping public response to tornado risks. The following study identifies and describes how residents received, made sense of, and ultimately used information to make decisions about responding to warnings. In addition to a range of theoretical concerns, research was also intended to develop a set of safety policies derived from what the data reveals about the social psychology of risk perception, economic constraints to shelter, and the cultural aspects of response.Data analysis reveals a diverse set of social factors governing community response to tornado warnings, including social networks, language, issues in comprehension, siren ambiguities, false alarms, tornado tracking, local business behaviors, warning specificity, and cultural myths

    Using Remotely Accessible Microscopy in the Elementary Classroom

    Get PDF
    Elementary children are at an age of investigation and exploration. In today’s society, this exploration often occurs using technology. Whether learning to type with Typing Club, using Google to search for information on Yellowstone National Park or designing and creating a city in Minecraft, technology has become a part of every child’s existence. Early access to technology could be the impetus to a students’ pursuit of a degree in STEM disciplines. Presented here is a conglomerate of University, Community College and High School sites that provide free access to advanced scientific technologies remotely for students to view and manipulate for themselves. The Remotely Accessible Instruments in Nanotechnology (RAIN) Network provides Scanning Electron (SEM), Atomic Force (AFM) and Confocal Microscopes to educators and allows an opportunity to connect with higher education scientist across the globe, with the goal of using technology to enhance the teaching of science to our children

    The XMM-Newton/INTEGRAL monitoring campaign of IGR J16318-4848

    Get PDF
    IGR J16318-4848 is the prototype and one of the more extreme examples of the new class of highly obscured Galactic X-ray sources discovered by INTEGRAL. A monitoring campaign on this source has been carried out by XMM-Newton and INTEGRAL, consisting in three simultaneous observations performed in February, March and August 2004. The long-term variability of the Compton-thick absorption and emission line complexes will be used to probe the properties of the circumstellar matter. A detailed timing and spectral analysis of the three observations is performed, along with the reanalysis of the XMM-Newton observation performed in February 2003. The results are compared with predictions from numerical radiative transfer simulations to derive the parameters of the circumstellar matter. Despite the large flux dynamic range observed (almost a factor 3 between observations performed a few months apart), the source remained bright (suggesting it is a persistent source) and Compton-thick (NH >1.2x10^24 cm-2). Large Equivalent Width (EW) emission lines from Fe Kalpha, Fe Kbeta and Ni Kalpha were present in all spectra. The addition of a Fe Kalpha Compton Shoulder improves the fits, especially in the 2004 observations. Sporadic occurrences of rapid X-ray flux risings were observed in three of the four observations. The Fe Kalpha light curve followed the continuum almost instantaneously, suggesting that the emission lines are produced by illumination of small-scale optically-thick matter around the high-energy continuum source. Using the iron line EW and Compton Shoulder as diagnostic of the geometry of the matter, we suggest that the obscuring matter is in a flattened configuration seen almost edge-on.Comment: accepted by Astronomy and Astrophysic

    Back to the edge: relative coordinate system for use-wear analysis

    Get PDF
    Use-wear studies rely heavily on experiments and reference collections to infer the function of archeological artifacts. Sequential experiments, in particular, are necessary to understand how use-wear develops. Consequently, it is crucial to analyze the same location on the tool's surface during the course of an experiment. Being able to relocate the area of interest on a sample is also essential for reproducibility in use-wear studies. However, visual relocation has limited applicability and there is currently no easy and efficient alternative. Here we propose a simple protocol to create a coordinate system directly on the sample. Three ceramic beads that serve as reference markers are adhered onto the sample, either with epoxy resin or acrylic polymer. The former is easier to work with but the latter is reversible so it can be applied to archeological samples too. The microscope's software then relocates the position(s) of interest. We demonstrate the feasibility of this approach and measure its repeatability by imaging the same position on an experimental flint blade 10 times with two confocal microscopes. Our results show that the position can be relocated automatically with a horizontal positional repeatability of approximately 14% of the field of view. Quantitative surface texture measurements according to ISO 25178 vary due to this positional inaccuracy, but it is still unknown whether this variation would mask functional differences. Although still perfectible, we argue that this protocol represents an important step toward repeatability and reproducibility in experimental archeology, especially in use-wear studies.Funding Agency Romisch-Germanisches Zentralmuseum - Leibniz Research Institute for Archeology by German Federal and Rhineland Palatinate funding (Sondertatbestand "Spurenlabor")info:eu-repo/semantics/publishedVersio
    • …
    corecore